Data Requirements for Model-Based Cancer Prognosis Prediction
نویسندگان
چکیده
Cancer prognosis prediction is typically carried out without integrating scientific knowledge available on genomic pathways, the effect of drugs on cell dynamics, or modeling mutations in the population. Recent work addresses some of these problems by formulating an uncertainty class of Boolean regulatory models for abnormal gene regulation, assigning prognosis scores to each network based on intervention outcomes, and partitioning networks in the uncertainty class into prognosis classes based on these scores. For a new patient, the probability distribution of the prognosis class was evaluated using optimal Bayesian classification, given patient data. It was assumed that (1) disease is the result of several mutations of a known healthy network and that these mutations and their probability distribution in the population are known and (2) only a single snapshot of the patient's gene activity profile is observed. It was shown that, even in ideal settings where cancer in the population and the effect of a drug are fully modeled, a single static measurement is typically not sufficient. Here, we study what measurements are sufficient to predict prognosis. In particular, we relax assumption (1) by addressing how population data may be used to estimate network probabilities, and extend assumption (2) to include static and time-series measurements of both population and patient data. Furthermore, we extend the prediction of prognosis classes to optimal Bayesian regression of prognosis metrics. Even when time-series data is preferable to infer a stochastic dynamical network, we show that static data can be superior for prognosis prediction when constrained to small samples. Furthermore, although population data is helpful, performance is not sensitive to inaccuracies in the estimated network probabilities.
منابع مشابه
Prediction of Breast Tumor Malignancy Using Neural Network and Whale Optimization Algorithms (WOA)
Introduction: Breast cancer is the most prevalent cause of cancer mortality among women. Early diagnosis of breast cancer gives patients greater survival time. The present study aims to provide an algorithm for more accurate prediction and more effective decision-making in the treatment of patients with breast cancer. Methods: The present study was applied, descriptive-analytical, based on the ...
متن کاملPrediction of Breast Cancer Metastasis Using Fuzzy Models based on Data from Iranian Breast Cancer Patients
Introduction: The metastasis of breast cancer, the spread of cancer to different body parts, is considered as one of the most important factors responsible for the majority of deaths caused by breast cancer in women. Diagnosing the breast cancer metastasis at the earliest stages helps to choose the best treatment and improve the quality of life for patients. Method: In the present fundamental r...
متن کاملPrediction of Breast Cancer Metastasis Using Fuzzy Models based on Data from Iranian Breast Cancer Patients
Introduction: The metastasis of breast cancer, the spread of cancer to different body parts, is considered as one of the most important factors responsible for the majority of deaths caused by breast cancer in women. Diagnosing the breast cancer metastasis at the earliest stages helps to choose the best treatment and improve the quality of life for patients. Method: In the present fundamental r...
متن کاملA Novel Model to Combine Clinical and Pathway-Based Transcriptomic Information for the Prognosis Prediction of Breast Cancer
Breast cancer is the most common malignancy in women worldwide. With the increasing awareness of heterogeneity in breast cancers, better prediction of breast cancer prognosis is much needed for more personalized treatment and disease management. Towards this goal, we have developed a novel computational model for breast cancer prognosis by combining the Pathway Deregulation Score (PDS) based pa...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کامل